Root Mean Square Derivative - Based Closed Newton Cotes Quadrature
نویسنده
چکیده
In this paper, a set of Root mean square derivative based closed Newton Cotes quadrature formula (RMSDCNC) is introduced in which the derivative value is included in addition to the existing closed Newton Cotes quadrature (CNC) formula for the calculation of a definite integral in the inetrval [a, b]. These derivative value is measured by using the root mean square value. The proposed formula yields improved precision than the existing formula. The error terms are likewise obtained by utilizing the method based on the precision of a Quadrature formula. Lastly, numerical examples are discussed to show the accuracy of the proposed rule.
منابع مشابه
Centroidal Mean Derivative - Based Closed Newton Cotes Quadrature
In this paper, a new scheme of the evaluation of numerical integration by using Centroidal mean derivative based closed Newton cotes quadrature rule (CMDCNC) is presented in which the centroidal mean is used for the computation of function derivative. The accuracy of these numerical formulas are higher than the existing closed Newton cotes quadrature (CNC) fromula. The error terms are also obta...
متن کاملComparison of Arithmetic Mean, Geometric Mean and Harmonic Mean Derivative-Based Closed Newton Cotes Quadrature
In this paper, the computation of numerical integration using arithmetic mean (AMDCNC), geometric mean (GMDCNC) and harmonic mean (HMDCNC) derivativebased closed Newton cotes quadrature rules are compared with the existing closed Newton cotes quadrature rule (CNC). The comparison shows that, arithmetic mean-based rule gives better solution than the other two rules. This set of quadrature rules ...
متن کاملRoot finding by high order iterative methods based on quadratures
We discuss a recursive family of iterative methods for the numerical approximation of roots of nonlinear functions in one variable. These methods are based on Newton-Cotes closed quadrature rules. We prove that when a quadrature rule with n+ 1 nodes is used the resulting iterative method has convergence order at least n+ 2, starting with the case n = 0 (which corresponds to the Newton’s method).
متن کاملA New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملError inequalities for an optimal 3-point quadrature formula of closed type
In recent years a number of authors have considered an error analysis for quadrature rules of Newton-Cotes type. In particular, the mid-point, trapezoid and Simpson rules have been investigated more recently ([2], [4], [5], [6], [11]) with the view of obtaining bounds on the quadrature rule in terms of a variety of norms involving, at most, the first derivative. In the mentioned papers explicit...
متن کامل